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We examine the stability to superharmonic disturbances of kite-amplitude two- 
dimensional travelling waves of permanent form in plane Poiseuille flow. The 
stability characteristics of these flows depend on whether the flux or pressure 
gradient are held constant. For both conditions we find several Hopf bifurcations on 
the upper branch of the solution surface of these two-dimensional waves. We 
calculate the periodic orbits which emanate from these bifurcations and find that 
there exist no solutions of this type at  Reynolds numbers lower than the critical 
value for existence of two-dimensional waves ( ~ 2 9 0 0 ) .  We confirm the results of 
Jimhez (1987) who first detected a stable branch of these solutions by integrating 
the two-dimensional equations of motion numerically. 

1. Introduction 
A major area of research in fluid mechanics is the transition of laminar plane 

Poiseuille flow to turbulent flow. Plane Poiseuille flow is the viscous incompressible 
flow between two parallel surfaces driven by a streamwise pressure gradient. The 
basic laminar solution for the velocity field is the parabolic profile 

A linear analysis is the natural first step in studying stability of the basic flow. The 
governing equation for infinitesimal disturbances of the form 

(1 *2) u’ = d(y) eWZ-ct), 

where a is the wavenumber and c is the complex phase speed, is the OrrSommerfeld 
equation. Only one eigenfunction of the Orr-Sommerfeld equation is known to have 
an eigenvalue whose imaginary part, c,(a,Re), becomes greater than zero in a region 
of the @,Re)-plane. The curve of marginal stability, ci = 0, is known as the 
Orr-Sommerfeld neutral curve, and the critical Reynolds number of this curve is 
5772.22. 

The critical Reynolds number from linear theory does not coincide with the 
experimentally observed critical Reynolds number when finite-amplitude dis- 
turbances are considered. The experiments of Carlson, Widnall & Peeters (1982), 
Nishioka & Asai (1985) and Alavyoon, Henningson & Alfredsson (1986) all indicate 
that transition occurs at a Reynolds number of w 1000, where the Reynolds number 
is defined in terms of the centreline velocity and half-height of the channel. This 
result suggests that finite-amplitude disturbances initiate transition. This conclusion 
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is also supported by observations from plane Couette flow. Plane Couette flow is the 
viscous incompressible flow between two parallel surfaces driven by the upper 
surface. The basic laminar solution for the velocity field is 

Y 
h 

u = uo-. 
Plane Couette flow is believed to be linearly stable for all Reynolds number (Drazin 
& Reid 1981). The experiments by Reichardt (1956) and others however, suggest 
that the transition to turbulence is very much like that of plane Poiseuille flow and 
occurs a t  a Reynolds number of x 750. Clearly, finite-amplitude disturbances need 
to be investigated to understand transition. 

In  the literature, there are two general approaches to studying finite-amplitude 
disturbances. One approach utilizes a numerical simulation of the time dependence 
of the disturbance. This approach has been used by Orszag & Kells (1980), Orszag & 
Patera (1983), Kleiser (1982), Kim (1983), and others. The advantages to this 
approach include the feasibility of high-resolution numerics, and the ability to 
simulate experimentally observed flows. The disadvantages include the inability to 
calculate unstable solutions, the lack of control over the solution form, and the 
difficulty in implementing a parameter search of steady solutions. 

An alternative approach, which we use in this paper, is to search for specific types 
of steady equilibrium solutions. This approach is capable of computing unstable 
solutions. The solution form can also be specified, and a parameter search can be 
undertaken in solution space. A major disadvantage to this approach is that high- 
resolution numerics have not been feasible. As will be shown in $2, however, with 
spectral methods calculations performed with a few modes are often sufficient to give 
good qualitative and sometimes quantitative results. 

Our approach to studying finite-amplitude disturbances is based on Saffman’s 
(1983) hypothesis that the transition from the laminar state to the turbulent state 
is dependent on the existence of intermediate vortical states and that the transition 
to turbulence is the three-dimensional instability of these states and their complex 
interactions. Typical examples of vortical states are spatially or temporally periodic 
solutions. The exact nature of the vortical state remains to be determined. Among 
the many possibilities are two-dimensional travelling waves, quasi-periodic solutions, 
and three-dimensional waves. Although the form of the vortical solution is not 
specified, the solution should exist a t  Reynolds number lower than the critical 
Reynolds number of linear theory, and the instabilities of the solution should grow 
on the convective timescale observed in experiment. 

Perhaps the simplest example of vortical states are two-dimensional travelling 
waves. Chen & Joseph (1973) proved the existence of two-dimensional travelling 
waves which bifurcate from plane Poiseuille flow. The first attempt to compute these 
waves was undertaken by Noether (1921), who studied equilibrium wave dis- 
turbances by expanding the disturbance in a Fourier series and truncating the 
resulting equations by using only one Fourier mode in the periodic direction. This is 
the ‘mean-field’ approximation and only takes into account the correction to the 
mean flow and the first harmonic; no higher harmonics are included. Using 
asymptotic expansions, Meksyn & Stuart (1951) obtained an approximate solution 
for these equations. They found that the critical Reynolds number decreases with 
increasing disturbance amplitude, eventually passes through a limit point and 
increases. The critical two-dimensional Reynolds number was found to be at a 
wavenumber larger than the maximum critical wavenumber on the OrrSommerfeld 
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curve. These results have been confirmed by more accurate numerical computations. 
Zahn et a,?. (1974) numerically computed these solutions by increasing the number of 
modes used in the periodic direction to two, and found a nonlinear neutral surface. 
Herbert (1976, 1977) used a spectral collocation technique which employs up to four 
modes and found the critical two-dimensional Reynolds number of the neutral 
surface a t  Re = 2935 and wavenumber a = 1.323. These calculations show that the 
critical Reynolds number is reduced by a factor of 2 compared to linear theory. 
However, there is still a large discrepancy from the experimentally observed critical 
Reynolds number of x 1000. I n  addition, the results show that even for a calculation 
with one mode, the results are qualitatively correct. This is surprising because the 
first nonlinear interaction involves the second harmonic. Further confirmation of the 
above results has been provided by several groups (e.g. Milinazzo & Saffman 1985). 

In  $2, we repeat these calculations because we wish to study two-dimensional 
secondary bifurcations. Because we use a more accurate procedure to  determine the 
critical two-dimensional Reynolds number, there are slight discrepancies between 
Herbert’s results and our own. In addition, we outline the numerical scheme which 
will be implemented throughout this paper. 

The discussion so far has been restricted to steady two-dimensional waves. Orszag 
& Patera (1983) found quasi-steady two-dimensional waves well below Re = 2900. 
These states eventually decay, but the decay rate is so slow that Orszag & Patera 
consider these states effectively steady. A three-dimensional stability analysis is then 
implemented under the assumption that the variation of the two-dimensional states 
on the slow timescale can be neglected. As an initial condition for this stability 
analysis, they use a two-dimensional state which is steady. The three-dimensional 
perturbations are found to grow explosively if the amplitude of the two-dimensional 
state is sufficiently large and the decay rate of the two-dimensional state is 
sufficiently small. Below a Reynolds number of x1000, they find that the two- 
dimensional decay rate is too large for three-dimensional disturbances to grow. 
Based on these results, Orszag & Patera propose that transition is the three- 
dimensional instability of two-dimensional quasi-steady flows. 

It remains of interest, however, to search for steady equilibria at Reynolds 
numbers below 2900. With the motivation of Saffman’s hypothesis, we searched for 
such steady solutions. In $ 3, we study the two-dimensional superharmonic stability 
of two-dimensional waves. Previously, stability studies have focused on the three- 
dimensional stability of two-dimensional waves. This is due to the observation that 
three-dimensional instabilities grow on a convective timescale while two-dimensional 
disturbances grow on a viscous timescale. As transition occurs explosively, it is 
believed that three-dimensional instabilities initiate transition. Our efforts, however, 
are aimed at finding bifurcations to two-dimensional states which exist at low 
Reynolds number. The three-dimensional instabilities of these states would then lead 
to transition. 

It has been demonstrated by Pugh & Saffman (1988) that the two-dimensional 
stability of two-dimensional waves depends on the particular stream-function 
boundary conditions applied at the walls. A Reynolds number can be defined by 
fixing the spatially averaged pressure gradient to be constant, or by fixing the flux 
to be constant. In $3 we rederive these results, concentrating on the correct 
derivation of stability for constant-pressure disturbances. For constant flux 
disturbances, we find, in agreement with previous work that the lower branch of the 
two-dimensional waves is unstable and a stability transition occurs a t  the limit 
point. The upper branch, however, does not remain stable. Two different pairs of 
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complex-conjugate eigenvalues cross the imaginary axis transversely. These crossings 
are Hopf bifurcations. 

For constant-pressure disturbances, we find that the lower branch is unstable but 
a stability transition does not occur a t  the limit point. Instead, another eigenvalue 
becomes unstable at the limit point. The two unstable eigenvalues merge on the 
upper branch and subsequently stabilize. The point of stabilization is a Hopf 
bifurcation. This Hopf bifurcation is not present in the case of constant-flux 
disturbances. In addition, we find two more Hopf bifurcations on the upper branch, 
which correspond to the Hopf bifurcations found in constant-flux disturbances. The 
presence of these various Hopf bifurcations implies the existence of periodic solutions 
or, in a fixed frame of reference, quasi-periodic solutions. 

In $4, we compute the branches of periodic orbits which emanate from the Hopf 
bifurcations found in $3. Previously, Jimknez (1987) found one of the branches of 
these solutions using a numerical simulation of two-dimensional dynamics. The Hopf 
bifurcation for this branch occurs on the upper branch of the neutral surface at a 
Reynolds number of ~ 5 0 0 0  and a = 1.0. Jimknez found that the Reynolds number 
of this branch increases with increasing amplitude. We confirm this result in our 
calculations. In addition, we calculate several unstable branches which Jimknez 
could not detect with a simulation of the dynamics. As discussed above, a new Hopf 
bifurcation appears when the Reynolds number is based on constant pressure. For 
the Hopf bifurcation which only appears in the case of constant-pressure 
disturbances, we find that the Reynolds number initially decreases with increasing 
disturbance amplitude. A limit point, however, is reached before the Reynolds 
number extends below the critical two-dimensional Reynolds number. For the other 
branches of periodic orbits, the Reynolds number increases with increasing 
disturbance amplitude and does not appear to turn back. 

Recently Barkley (1990) has made use of the numerical results reported here to 
derive the form of the amplitude equations which hold near the nose of the neutral 
surface. In particular he examines a range of stability problems by defining a 
parameter which interpolates between the constant-pressure and constant-flux 
results. Coupled with detailed knowledge about the location and criticality of the 
bifurcation points presented here and by Pugh 6 Saffman (1988), he confirms the 
result that it is not possible to continue the sub-critical Hopf bifurcations beyond the 
critical two-dimensional Reynolds number. These results depend crucially on the 
observation (obtained from these numerical results) that no additional bifurcations 
appear as one follows the path of the sub-critical Hopf bifurcation. From this 
analysis Barkley provides global bifurcation diagrams for these solutions. 

Finally it should be noted that, given the nature of our numerical scheme, it has 
not been possible to sufficiently refine the resolution so that numerical convergence 
of the results is unequivocally demonstrated. We have attempted throughout the 
paper to indicate that while the results are not fully converged, they are qualitatively 
sensible. 

2. Steady two-dimensional waves 

the primitive variable formulation : 
Consider the two-dimensional Navier-Stokes equations for incompressible flow in 

(2.1) 
au 1 - + ( u . V ) u  = --wp+vv2u, 
at P 
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w-u = 0, (2.2) 

where u = (u,  v),  the velocities in the x- and y-directions respectively. We introduce 
a stream function 

With the stream 
equivalent stream 

Y(z, y, t )  by letting 

function as defined by (2.3), we transform (2.1)-(2.2) to the 
function formulation : 

+ YuV2Yx- YxV2YlY = vv4!P, 
av2 ‘Y 

at (2.4) 

where the subscripts denote differentiation with respect to the indicated variable. 
For flow down a channel, an exact solution to (2.4) is 

This solution satisfies the no-slip boundary conditions 

and has a parabolic velocity profile. We call this the basic solution and let y b  = 
To find bifurcations to two-dimensional travelling waves, we study the stability of 

U0(y-y3/3h2). 

Yb to infinitesimal disturbances. Thus let 

Y = Yb + e$ (y ) eia(x-ct), (2.6) 

where a is the wavenumber and c = c,+ici is the complex phase speed of the 
disturbance. Substituting (2.6) into (2.4)-(2.5) and scaling lengths by the channel 
half-width h and velocities by the characteristic velocity U,, (2.4)-(2.5) become 

1 - (D2-a2)2$ = (U-c ) (D2-a2)$ -U”$  = 0, 
iaRe 

a $ = D $ = O ,  y = f l ,  (2.8) 

where Re = U,, hlv is the Reynolds number, D represents differentiation with respect 
to y, U =  1-y2 is the dimensionless basic velocity, and u” denotes the second 
derivative with respect to y of the basic velocity. Equation (2.7) is the 
Orr-Sommerfeld equation. For a given wavenumber and Reynolds number, (2.7) and 
(2.8) constitute an eigenvalue problem for the eigenvalue c and the eigenfunction 

Only one eigenfunction of (2.7) is known to have an eigenvalue c(a,  Re) whose 
imaginary part becomes greater than zero in a region of the (a, Re)-plane (Drazin & 

$(Y)- 
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Reid 1981). The curve of points defined by ci = 0 is known as the curve of marginal 
stability. If one holds the wavenumber fixed and increases the Reynolds number in 
order to pass through the marginal stability curve, the eigenvalue and its complex 
conjugate cross the imaginary axis transversely. Therefore, the curve of marginal 
stability also represents a curve of Hopf bifurcation points. 

To solve this problem numerically, we impose two additional equations to specify 
the phase and amplitude of the disturbance. One convenient way is to set 

(2.9) 

where c1 and c2 are constants. 
We applied the software package AUTO developed by Doedel & Kernevez (1985) to 

solve (2.7)-(2.9). Newton iteration is used to solve the nonlinear system along the 
solution branch with four interpolating collocation points per mesh point and up to 
50 mesh points to accurately resolve the boundary layers formed at high Reynolds 
numbers. In  addition, the mesh was adjusted after every step to minimize the local 
discretization error. 

To compute the marginal curve, an initial guess must be provided for the 
eigenfunction, eigenvalue, and the other parameters. The eigenvalue spectrum for 
(2.7) has been derived for Re 4 1 (Drazin & Reid 1981). Using this spectrum as an 
initial guess, we continue the solution to the curve where ci = 0. We found the 
minimum Reynolds number to be 5772.22. This value compares well with the value 
computed by Orszag (1971) and Davey, Hocking & Stewartson (1974). 

We next compute steady two-dimensional travelling waves in the streamwise 
direction with phase speed c .  Letting Y ( x ,  y, t )  = Yb+ $(Z, y), where Z = x - c t ,  and 
scaling lengths and velocities as above, (2.1) becomes 

Re #’( - 1) = cl,  Im #”( - 1) = c2, 

1 
Re ( U -  c) v2$x -- V4$ - V$bx + V2$, - $x VZ&) = 0. 

Using a spectral decomposition, we set 

yielding the modal equations 

(2.10) 

(2.11) 

Re 

where S,  f n  = ianf, and 
-2 

f * g =  Z f n - m g m  
m--m 

is the convolution of the two Fourier series. The reality of $ ( x ,  y) indicates that 

implying that only modes n 2 0 need to be determined. 
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The modal no-slip boundary conditions are 

(2.13) 
ian$,=O, y = + i ,  n B 0 . J  

For n = 0 ,  the constant mode of v is identically zero and we must specify two 
additional boundary conditions. As @ is arbitrary to within a constant, we let 

$,( - 1) = 0. (2.14) 

One boundary condition is still undetermined. This indeterminacy results from an 
arbitrariness in the choice of U,. One possible choice is to define U, such that there 
is no perturbation to the average flux. The average flux Q is given by 

(2.15) 

Using (2.3) with Y = Yb+$(z, y), we obtain 

Q = (yt,+$,>It:. (2.16) 

To permit no perturbation to the average flux, we set 

$o(l)-$o(-l) = 0. (2.17) 

Equations (2.17) and (2.14) yield the additional boundary condition 

$,(l) = 0. (2.18) 

Alternatively, one can define U, such that there is no perturbation to the average 
pressure gradient. The average pressure gradient P is given by 

(2.19) 

To allow no perturbation to the average pressure gradient, we set the additional 
boundary condition 

Equations (2.18) and (2.20) represent the two limits of zero average flux 
perturbation and zero average pressure gradient perturbation. In  general, it is 
possible to take a linear combination of these flows and thus there is a continuous 
range of boundary conditions. Corresponding to (2.18) and (2.20) are two different 
Reynolds number ReQ and Re, : 

$ o , y y ( l ) - $ o , y y ( - l )  = 0. (2.20) 

3Q 
Q -  4 v '  

Re -- 

h3P 
Re, = --. 2v2 

(2.21) 

(2.22) 

It is important to note that these Reynolds numbers represent different scalings of 
the problem and not different physics. In fact, using (2.16) and (2.19) one can show 
that 

Re, = -a[&OQ, yy(' - $ 0 0 ,  yy( - ')I], (2.23) 
where $oQ,yy denotes that the second derivative was calculated with the constant 
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Parameters Herbert (1976) Present 

N = l  N = 2  N = 3  N =  1 N = 2  N = 3  
a 1.2220 1.3130 1.3201 1.2222 1.3129 1.3179 

Re, 2825.56 2701.74 2911.6 2825.56 2701.72 291 1.36 
C 0.3458 0.3663 0.3643 0.3458 0.3663 0.3640 

TABLE 1. Comparison of phase speeds for two-dimensional travelling waves in plane Poiseuille 
flow with results of Herbert ( 1  976) 

flux boundary condition. For planar Poiseuille flow these two Reynolds numbers are 
equivalent. In general Re, = f(ReQ, a) and for two-dimensional waves Re, > ReQ 
(Saffman 1983). 

An additionF1 equation is required to eliminqte the arbitrary phase shift in the x- 
direction. If $, is a solution for a given c ,  $,einb is also a solution where 6 is 
arbitrary. To eliminate this indeterminacy, we set 

Im$y( - 1 )  
Re $;( - 1) 

= constant. (2.24) 

To continue the solution branch of the travelling wave solutions of (2.10) into the 
nonlinear regime, the amplitude of the nonlinear wave must be defined. One possible 
choice is related to the disturbance energy: 

(2.25) 

The factor 15/16 is chosen so that the energy of the basic flow is normalized to one. 
Truncating (2.12) a t  n = N ,  we are left to solve a finite system of nonlinear 

ordinary differential equations (ODE’S). We implement the numerical scheme 
described above and compute solution branches to the resulting nonlinear algebraic 
system by pseudo-arclength continuation. An initial guess is provided by the 
eigenfunction calculation described above. 

Several authors have calculated the two-dimensional waves discussed in this 
section. We have repeated the calculation to facilitate the study of two-dimensional 
secondary bifurcations to be discussed in the later sections. As a check on our 
calculations, we show that our results are in good agreement with the earlier 
calculations. 

In  table 1, we compare our values for the critical two-dimensional Reynolds 
number of the nonlinear neutral surface, based on constant pressure, to  Herbert’s 
(1976) results for N = 1, N = 2 and N = 3 modes. As shown in the table, there are 
slight quantitative discrepancies between Herbert’s results and our own. These 
discrepancies can be attributed to the more accurate procedure which was used in our 
calculation. Herbert ( 1976) determined the critical two-dimensional Reynolds 
number by determining the limit point in Reynolds number for each wavenumber. 
We used a two-parameter continuation of the limit point to determine the critical 
two-dimensional Reynolds number. Two-parameter continuation of limit points is 
described in Keller (1988) and is implemented in AUTO. To check our results, we 
computed the critical Reynolds number a t  the critical wavenumber given by Herbert 
(1976) and confirmed his results. 
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In  summary, we have calculated the marginal stability curve for plane Poiseuille 
flow. The points on this curve are bifurcation points to two-dimensional travelling 
waves. We calculated the nonlinear neutral surface which is formed from the solution 
branches of these waves. The critical two-dimensional Reynolds number of this 
surface was found to be approximately 2900+ 100 based on constant pressure 
gradient and 2600+ 100 based on constant flux. Although this reduces the critical 
Reynolds number from linear theory by a factor of 2, there is still a large discrepancy 
from the Reynolds number of x 1000 found in experiment. 

3. Stability to two-dimensional disturbances 
In  this section, we examine the two-dimensional stability of the two-dimensional 

waves found in plane Poiseuille flow. In particular, we are interested in the stability 
of these flows to perturbations of the same wavelength as the two-dimensional waves. 

In  0 1,  no two-dimensional waves were found below a Reynolds number of 2600 
(based on flux). This suggests that some other two-dimensional or three-dimensional 
steady state will be needed to explain the experimentally observed transition 
Reynolds number of approximately 1000. The search for such flows motivates the 
work in this section. We study the two-dimensional stability of two-dimensional 
waves in search of bifurcations to other two-dimensional states which may exist 
below a Reynolds number of 2600. 

An earlier two-dimensional stability analysis by Pugh & Saffman (1988) pointed 
out some interesting features. From considerations put forth by Joseph (1976) and 
others, Orszag & Patera (1983) predicted that the lower branch of this surface is 
unstable to two-dimensional disturbances with a stability transition occurring at the 
limit point. However, as Pugh & Saffman (1988) showed numerically, in general this 
prediction is incorrect. In  fact, although neutrally stable eigenmodes are present a t  
the limit point, unstable eigenmodes may also be present. I n  addition, Pugh & 
Saffman (1988) found bifurcations to quasi-periodic solutions on the upper branch. 
At these bifurcations, there is a change of stability. We have augmented these results 
by performing a more extensive numerical study and several new bifurcations have 
been found. 

We wish to perturb the steady two-dimensional flows discussed in the previous 
section. Thus, consider the dimensionless form of the stream-function formulation in 
a frame of reference moving with velocity c :  

a 1 
at Re - (V!P) - -VY+  (Y,-c) V Y x -  Yx VZY, = 0. 

We use Floquet theory to study the stability of the two-dimensional waves. In  a 
frame of reference in which the travelling waves appear steady, the two-dimensional 
states can be described by a stream function 

(3.2) Y2dK y) = Y2,(57+2x/a7 y), 

where a is the wavenumber of the two-dimensional wave. Then, linear perturbations 
exist of the form 

n=-m 
(3.3) 

where CT and {Cn} are the eigenvalue and eigenfunction respectively and p is the 
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subharmonic wavenumber of the disturbance. Note that below we use x for P. We 
take p = 0, which corresponds to superharmonic disturbances, and 

Ym(X,Y) = ~ b + $ ( X , Y L  (3.4) 

where Yb is the stream function of the basic flow and $(x, y) represents a two- 
dimensional secondary flow. Substituting (3.4) into (3.3), equation (3.1) becomes 

(3.5) 

where U is the dimensionless basic velocity and we have used the spectral 
representation for +(x, y). Applying the no-slip boundary conditions a t  the walls, we 
have in modal form 

n =+ 0:  Cny( f 1 )  = 0 corresponding to  u,( f 1) = 0, 

Cn( f 1) = 0 corresponding to wn( f 1)  = 0, 

n = 0: coy( & 1) = 0 corresponding to  uo( f 1) = 0. (3.6) 

For n = 0, vo = 0 is identically satisfied and two additional boundary conditions 
must be given. As the stream function is arbitrary to within a constant, we let 

(3.7) 

The final boundary condition is determined by fixing the parametrization of the 

Q( - 1) = 0. 

problem. Two possible choices are 

t o ( + u - t 0 ( - 1 )  = o ,  (3.8) 

corresponding to the maintenance of constant flux or constant pressure respectively. 
To derive the above boundary conditions we consider the dimensionless 

momentum equation in the x-direction : 

au au au ap 1 -+u-+v- = --+-V%. 
at ax ay ax Re 

Using integration by parts and the continuity equation, the convective terms 
disappear upon averaging in the x-direction and integration over the channel width. 
The momentum equation, therefore, becomes 

in terms of the stream function $. Here $, represents the zeroth mode of the Fourier 
representation for $, and P is the average pressure gradient. Only the constant mode 
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is present for the stream function since we are averaging over x. Substituting (3.3) 
for the stream function and specifying no perturbation to the basic pressure gradient, 
we derive (3.9) and (2.19). By failing to consider the time derivative in the 
Navier-Stokes equation, Pugh & Saffman (1988) stated the constant pressure 
boundary condition as 

cOlo , l l (+1) -c0 ,y l / ( - f )  = 0. (3.10) 

As can be seen from (3.9), this omission should introduce errors for large Reynolds 
number, and in fact this will be shown numerically. We implemented the method of 
spectral collocation (Gottlieb & Orszag 1977) to solve the system of ODE'S and 
boundary conditions described by (3.5)-(3.9). We let 

(3.11) 
k-0 

where pk(y) is a modified Chebyshev polynomial. The polynomials are modified to 
satisfy the boundary conditions (3.6)-(3.8) identically. In order to satisfy the 
constraint of constant average flux we set 

and to satisfy the constraint of constant average pressure gradient 

QY) = 1, (1 - x 2 )  Tk(4 dx, 

(3.12) 

(3.13) 

where Tk(y) = cos k(c0s-l y). Derivatives of c,(y) are computed by differentiating the 
Chebyshev modes. 

Substituting (3.11) into ( 3 4 ,  it remains to solve a system of algebraic equations 
for ank (n = 0, . . . , N, k = 0 , .  . . , K ) .  With the modifications described by (3.12) and 
(3.13), the boundary conditions (3.6)-(3.7) are identically satisfied, and only (3.8) or 
(3.9) must be imposed on the system of equations. Gottlieb & Orszag (1977) have 
shown that the maximum error can be approximately minimized by evaluating the 
equations at the maxima of the Kth Chebyshev polynomial. Evaluating at these 
maxima (0, = j.rc/K, yj = cos 0,,j = 0, . . . ,K) and truncating (3.5) at a finite number of 
modes, we only need to solve a discrete generalized eigenvalue problem of the form 

Ga = uBa (3.14) 

Because large errors were incurred when using standard generalized eigenvalue 

Ca = ua where C = B-'G. (3.15) 

The matrix C is complex if one uses the exponential form of the Fourier series shown 
in (3.3). Because the secondary flow is real, a real formulation for the matrix C can 
be derived by writing the Fourier series in trigonometric form. The real formulation 
reduces the memory requirements of the computation by a factor of 4. We also note 
that the necessity for inverting the matrix B in (3.14) motivated the modification of 
the Chebyshev polynomials described by (3.12)-(3.13). The enforcement of the time- 
independent boundary conditions (3.6)-(3.7) on (3.14) would introduce rows of zeros 
in the matrix B and prevent its inversion. 

Calculations were performed for both constant-flux and constant-pressure 

for the complex eigenvalue u and complex eigenvector a. 

solvers, we inverted the matrix B and solved the regular eigenvalue problem 
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FIGURE 1. A plot of the maximum growth rate versus flux Reynolds numbers (Re,) for two- 
dimensional disturbances of the finite-amplitude travelling waves computed in 92. Results shown 
here are for a = 1.1. Note that the limit point for travelling wave solutions is in this case a point 
of transition from stability to instability as one traverses the neutral curve from the upper branch 
through the limit point to the lower branch. Calculations are shown here for N = 1 (circles), N = 
2 (triangles), and N = 3 (squares) modes with K = 70 collocation points in the y-direction. 

disturbances. All of the calculations to be discussed were performed with a = 1.1. We 
first consider constant-flux disturbances. In figure 1 we plot the maximum growth 
rate as a function of Reynolds number for N = 1 Fourier mode and K = 7 0  
Chebyshev modes. The most unstable eigenvalue is always real in the range of 
Reynolds number shown. The lower branch is unstable with a stability transition 
occurring at the limit point. 

At the limit point, there are two neutrally stable eigenvalues. As Pugh & Saffman 
(1988) have shown, one eigenvalue is always zero on the two-dimensional wave 
branch. This eigenvalue corresponds to the trivial phase shift solution of our system. 
In addition, there is a neutrally stable eigenvalue a t  the limit point with geometric 
multiplicity one and algebraic multiplicity two. Although a stability transition 
occurs at the limit point, the upper branch does not remain stable. As shown in figure 
2, there is a change of stability a t  Re = 6300. As the eigenvalue and its complex 
conjugate cross the imaginary axis transversely, the point of stability transition 
represents a secondary Hopf bifurcation. The periodic flows emanating from this 
bifurcation together with the underlying steady waves lead to quasi-periodic 
solutions. Using a numerical simulation of the two-dimensional dynamics, J imhez  
(1987) detected this bifurcation and followed the quasi-periodic flows. In the next 
section, we will compute these flows using continuation. 
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FIQURE 2. A plot of the real and imaginary parts of a complex eigenvalue corresponding to the 
stability of solutions on the upper branch versus Re,. The crossing point through zero of the real 
part of the eigenvalue represents the first Hopf bifurcation on the upper branch. Calculations are 
shown for N = 1 (circles), 2 (triangles), and 3 (squares) modes, a = 1 . 1  and K = 70. See also table 
2 for numerical values. 

In figure 1 we also plot the maximum growth rate as a function of Reynolds 
number for N = 2 Fourier modes and K = 70 Chebyshev modes. As in the calculation 
with one Fourier mode, the lower branch is unstable with a stability transition 
occurring a t  the limit point. However, we now find two Hopf bifurcations occurring 
on the upper branch. The first Hopf bifurcation occurs at  a Reynolds number of 5600 
with period 20.6, the second at  a Reynolds number of 6125 and with period 18.6. The 
variation of the real and imaginary parts of the relevant eigenvalue for the second 
bifurcation is shown in figure 3. We note that as the upper branch is unstable after 
the first Hopf bifurcation, a simulation of the dynamics will not detect the second 
Hopf bifurcation. Results for a calculation with N = 3 Fourier modes and K = 70 
Chevyshev modes are also shown in figures 1-3. Only a quantitative difference can 
be seen from the N = 2 calculation. We repeated these calculations for N = 4 Fourier 
modes and again no qualitative difference was seen. 

In table 2, we tabulate the period and Reynolds number of the two Hopf 
bifurcations for N =  1 4  modes. As can be seen, we do not have quantitative 
convergence. Jim6nez (1987) observed that the location of the first Hopf bifurcation 
did not settle down until N = 7. Although this resolution is not attainable with our 
formulation owing to memory limitations, we do obtain qualitative consistency of 
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FIGURE 3. A plot of the real and imaginary parts of a complex eigenvalue corresponding to the 
stability of solutions on the upper branch versus Re,. The crossing point through zero of the real 
part of the eigenvalue represents the second Hopf bifurcation on the upper branch. Calculations are 
shown for N = 2 (triangles) and 3 (squares) modes, a = 1.1 and K = 70. See also table 2 for 
numerical values. 

Bifurcation N Re, T 
1 1 6300 17.5 

2 5600 20.6 
3 6250 12.5 
4 5875 13.4 

2 2 6125 18.6 
3 7750 20.73 
4 7500 19.75 

TABLE 2. Tabulation of the period for Hopf bifurcations from two-dimensional waves in plane 
Poiseuille flow. Calculations are based on constant flux. 

the results, i.e. the Hopf bifurcation does not disappear and the Reynolds number of 
the bifurcation lies between 5600 and 6300. Our calculations also confirm some of the 
quantitative features that Jimdnez observed. In particular, the period of the first 
Hopf bifurcation is decreasing with increasing resolution. Jimdnez found that the 
period of the bifurcation decreased from ~ 1 9 . 3  to ~ 1 4 . 3  when increasing the 
resolution from N = 1 to N = 7 modes. For the second Hopf bifurcation, which 
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FIQIJRE 4. A plot of the maximum growth rate versus pressure Reynolds number (Re,) for two- 
dimensional disturbances of the finite-amplitude travelling waves computed in § 2. Results shown 
here are for a = 1.1. Note that the limit point for travelling wave solutions is not in this case a point 
of transition from stability to instability as one traverses the neutral curve from the upper branch 
through the limit point to the lower branch. The stability transition is due to the different 
eigenvalue acquiring a positive real part on the upper branch (see also figure 5). Calculations are 
shown here for N = 1 (circles), N = 2 (triangles), and N = 3 (squares) modes with K = 70 collocation 
points in the y-direction. 

J imhez could not detect, there is less variation with increased resolution. In $4, we 
obtain qualitatively correct results, with low resolution, for the periodic orbits which 
emanate from these bifurcations. Specifically, we show that we obtain the correct 
behaviour for the Reynolds number and period with increasing amplitude. 

One sees a different stability picture for constant-pressure disturbances. In figure 
4, we plot the maximum growth rate as a function of Reynolds number for N = 1-3 
Fourier modes and K = 70 Chebyshev modes. As in the case of constant-flux 
disturbances, the lower branch is unstable. A stability transition, however, does not 
occur at  the limit point. As shown in figure 5, the real part of a different eigenvalue 
passes through zero at the limit point, indicating instability on the upper branch. 
The two unstable eigenvalues merge on the upper branch and cross the imaginary 
axis transversely. Thus, we have detected a Hopf bifurcation not present for 
constant-flux disturbances. In  contrast to the results of Pugh & Saffman (1988), we 
find that the upper branch does not remain stable. Using N = 1 modes we find that 
on the upper branch a complex eigenvalue acquires a positive real part indicating 
instability at a Reynolds number of 13500 with a period of roughly 36 (see table 3). 
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F ~ G ~ J R E  5. A plot of the real and imaginary parts of two eigenvalues as a function of Re,. Depicted 
here is the merger of the real parts of two unstable eigenvalues on the upper branch and the 
associated Hopf bifurcation as the real part of the merged eigenvalues crosses Reu = 0. 
Calculations are shown with N = 1, K = 70, and a = 1. 1. 

Bifurcation N Re, T 
1 1 3136 4833.22 

2 3630 4742.32 
3 3800 4935.43 
4 3775 4875.63 

2 9400 35.5 
3 9675 17.65 
4 9592 16.54 

3 12775 33.76 
4 12960 33.85 

2 1 13500 36 

3 2 13000 34.0 

TABLE 3. Tabulation of the period for Hopf bifurcations from two-dimensional waves in plane 
Poiseuille flow. Calculations are based on constant pressure. 

The point of stability transition is a Hopf bifurcation and corresponds to the Hopf 
bifurcation detected in the calculations for constant-flux disturbances. This 
bifurcation was not detected by Pugh & Saffman (1988) owing to their use of a 
slightly different boundary condition to enforce the constraint of constant pressure. 
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FIQURE 6. A plot of the real and imaginary parts of two complex eigenvalues corresponding to the 
stability of solutions on the upper branch versus Re,. The crossing points through zero of the real 
part of the eigenvalue represent the second (circles) and third (squares) Hopf bifurcation on the 
upper branch. Calculations are shown for N = 2 modes, a = 1.1 and K = 70. See also table 3 for 
numerical values. 

As can be seen from (3.8) and (3.9), for large Reynolds number the constant-flux and 
constant-pressure boundary conditions are equivalent. In fact, at  the Hopf 
bifurcation the constant-pressure and constant-flux Reynolds number are related by 
the scaling described in equation (2.23). The use of (3.10) also explains the 
quantitative difference between their results and our own. 

In figures 4-6, we include the results obtained with N = 2 Fourier modes and K = 
70 Chebyshev modes. The results are qualitatively similar to the N = 1 calculation 
except that we now detect three Hopf bifurcations on the upper branch. The first 
Hopf bifurcation corresponds to a transition from instability to stability, and the 
second occurs at a Reynolds number of 9400 with period 35.5 and corresponds to the 
Hopf bifurcation detected in the N =  1 calculation. The upper branch is unstable 
after this Hopf bifurcation. The third is new and occurs at a Reynolds number of 
13000 with period 34. The appearance of a new Hopf bifurcation with N = 2 Fourier 
modes corresponds to the results obtained for constant-flux disturbances. This is to 
be expected as the constant-flux and constant-pressure boundary conditions are 
equivalent for large Reynolds number. 

In figure 4 we also plot the maximum growth rate for a calculation with N =  3 
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Fourier modes and K = 70 Chebyshev modes. Only a quantitative change is seen 
from the N = 2 calculation, and the three Hopf bifurcations persist. The calculations 
were repeated for N = 4 Fourier modes and again only a quantitative change was 
seen. In table 3, we tabulate the period and Reynolds number for the three Hopf 
bifurcations on the upper branch. As in the case of constant-flux disturbances, we do 
not obtain quantitative convergence for the second Hopf bifurcation. 

In  summary, we have examined the stability of two-dimensional waves to two- 
dimensional superharmonic disturbances. For constant-flux disturbances, the lower 
branch is unstable with a stability transition occurring a t  the limit point. In  
addition, there are two Hopf bifurcations occurring on the upper branch. For 
constant-pressure disturbances the lower branch is unstable but a stability transition 
does not occur a t  the limit point. Instead, the real part of another eigenvalue 
vanishes a t  the limit point and becomes positive on the upper branch. The two 
unstable eigenvalues merge and stabilize; the point of stabilization is a Hopf 
bifurcation. In  addition there are two other Hopf bifurcations on the upper branch. 
As in the constant-flux disturbances, these Hopf bifurcations correspond to different 
pairs of eigenvalues which acquire positive real parts on the upper branch. In the 
next section, continuation is used to compute these bifurcating flows a t  finite 
amplitude relative to the two-dimensional waves. 

4. Quasi-periodic solutions 
In this section, we study several branches of quasi-periodic solutions which 

bifurcate from the two-dimensional travelling waves. We look for quasi-periodic 
solutions by solving boundary-value problems via continuation and Newton's 
method. This approach allows us to calculate both stable and unstable solution 
branches. Because we are studying the transition regime both stable and unstable 
solutions are of interest. 

We again consider the dimensionless form of the two-dimensional NavierStokes 
equation corresponding to a frame of reference moving with speed c and look for 
solutions of the form 

m m  

Y(x, y, t )  = Yo+$ = Y,,+ C 2 eimwt e &rnn(Y)? (4.1) 
n---m m--m 

where w is the frequency introduced by the quasi-periodic flow and Yb is the stream 
function 9f the basic flow. Substituting (4.1) into (3.1), we derive a modal equation 
for each y?mn similar in form to (3.2). Because P((x, y , t )  is real, we require 

This implies that we only need to solve for the modes m > 0 (for all n).  The modal 
no-slip boundary conditions become 

ian$,,=O at y = f l ,  m>O V n + 0 .  

For n = 0, v o = ( g )  = o  
n-0 
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is identically satisfied, and we must specify 2(M+ 1) additional boundary conditions. 
As the stream function is arbitrary up to a function of time, we set 

(4.4) 

Applying (4.4) at every instant of time, we derive the (M+ 1 )  boundary conditions 

$(y = -1 )  = 0. 

$mO(-l) = 0, m 0. (4.5) 

The final (M+ 1 )  boundary conditions are determined by fixing the parametrization 
of the problem. One possible parametrization is to disallow any perturbation to the 
spatially averaged flux. To disallow perturbations to the flux Q, we set 

Applying (4.6), together with (4.5), at every instant of time, we derive the (M+1) 
additional boundary conditions 

& m o ( ~ )  = 0, m = 0, ..., M .  (4.7) 
Alternatively, one can disallow any perturbations to the spatially averaged 

pressure gradient. The spatially averaged pressure gradient is 

To disallow perturbations to P, we set 

A +1 4) 

eimwt ( $,,, yy - imu$mo) = 0. 
m--m -1 

(4.9) 

Applying (4.9) at every instant of time, we derive the (M+ 1 )  additional boundary 
conditions 

1 .  
- [$mo,  y z / ( l ) -  $mo, t/& - 1)I = i ~ [ $ m o ( l ) - $ / m o ( -  1)1* (4.10) Re 

As in the case of two-dimensional waves, the two boundary conditions define two 
Reynolds numbers Re, and ReQ given by (2.21) and (2.22). 

To solve the system described by (4.1)-(4.5) with the additional boundary 
condition (4.7) or (4.10), we must impose two additional equations to eliminate $he 
arbitrariness in the Ehase corresponding to translations in x and t .  Specifically, if $mn 
is a solution so is $m,, exp (imSw) exp (inpa). To eliminate the arbitrariness in the 
phase, we set 

(4.1 1)  

where c1 and c2 are constants. We also introduce an amplitude A ,  to continue into the 
nonlinear regime : 

(4.12) 
\m--mn--m 1 

Truncating (4.3) at a finite number of modes, it remains to solve a nonlinear 
system of ODE’S with the additional equations (4.1 1)-(4.12) and the appropriate 
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FIGURE 7. A plot of the amplitude as a function of Reynolds number based on pressure Re, for 
quasi-periodic solutions which originate from the Hopf bifurcations discussed in 8 3. Calculations 
are shown for N = 1 ,  M = 1 (solid line), N = 1, M = 2 (dashed line), and N = I ,  M = 3 (dotted line). 
All calculations are performed with K = 70 at a wavenumber a = 1 .1 .  Note that the calculation for 
M = 1 is inadequately resolved and produces qualitatively incorrect results when compared with 
calculations at higher resolution. 

boundary conditions. We implemented the discretization method described in 8 2 to 
solve this system and used arclength continuation to compute the solution branches. 
An initial guess for these branches is provided by the eigenvectors found in the 
stability analysis described in 53. 

We first consider the Hopf bifurcations found in constant-pressure disturbances. 
In $3, we showed that a Hopf bifurcation occurs on the upper branch when the real 
parts of a pair of complex-conjugate eigenvalues merge and then become negative 
(see figure 4). In figure 7 we plot amplitude versus Reynolds number for the quasi- 
periodic solutions which originate from that Hopf bifurcation. The calculations 
shown use N =  1 modes in 5, M = 1 to M = 3 modes in t and a = 1.1. As shown in 
figure 7,  for the M = 1 mode calculation the Reynolds number increases until 
reaching a limit point at  7400. The Reynolds number then decreases and the branch 
of quasi-periodic solutions terminates on the two-dimensional wave branch a t  a 
Reynolds number of 3100. However, as can be seen, the use of only M = 1 mode 
yields ill-resolved results. In figure 7, we also plot amplitude versus Reynolds number 
for N = 1 and M = 2 modes. For this calculation, the Reynolds number decreases and 
reaches a limit point of 3100. The same qualitative picture is seen for M = 3 modes. 
We repeated these calcualtions for N = 2 and M = 4 modes and again no qualitative 
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FIQURE 8. The variation of (a) the frequency w and ( b )  phase speed c with amplitude for quasi- 
periodic solutions. Calculations are based on constant pressure and are shown for a = 1.10, 1.15, 
1.21. Results are shown for resolution N = 1, M = 2, K = 70. 

change was seen. In figure 8, we show how c and w vary on the branch for various 
values of a. In figure 9 we display the variation of the amplitude versus the Reynolds 
number for quasi-periodic solutions with a = 1.15 and a = 1.21. 

In figure 10 we display contours of constant vorticity for a quasi-periodic flow with 
Reynolds number of 3056 and a = 1.1. The contours are shown for YE [- 1,0.78], z 
E [0 ,2x /a ] ,  and t E [0, T] where T = 2x /w.  As can be seen from the figure, the effect 
of the modulation in time is to wobble the high-vorticity regions from left to right 
in 2. The basic form of the flow appears unaffected. 

As the Reynolds number initially decreases with increasing amplitude, the periodic 
orbits emanating from the Hopf bifurcation are stable (Marsden t McCracken 1976). 
One of the eigenvalues, however, will go through zero at the limit point of the 
periodic orbits. In addition, the branch may become unstable before the limit point. 
Because of the large memory requirements, we did not implement a Floquet analysis 
to determine when the branch becomes unstable. 

Recently, Barkley (1990) has argued that the branch of quasi-periodic orbits could 
extend below the critical two-dimensional Reynolds number only if certain events 
occurred. For example, a secondary bifurcation would have to occur before the limit 
point of the two-dimensional waves. From our computations we see that the branch 
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FIGURE 9. The variation of the amplitude with Reynolds number Re, for quasi-periodic solutions. 
Calculations are based on constant pressure and are shown for a = 1.15, 1.21. Results are shown 
for resolution N = 1 ,  M = 2, K = 70. Note that both sets of solutions possess limit points, indicating 
that there is a minimum Reynolds number for existence of these flows. 

of quasi-periodic orbits reaches a limit point above the limit point of the two- 
dimensional waves. This scenario has been shown by Barkley to be an acceptable 
picture in phase space. 

It was hoped that this branch of quasi-periodic solutions would extend below a 
Reynolds number of 2600 (based on constant flux) but for all the wavenumbers 
studied, however, no such branches were found. The critical Reynolds number of the 
two-dimensional waves is the envelope for the quasi-periodic solutions. As pointed 
out above, we did not implement a Floquet analysis of these orbits. The existence of 
a second Hopf bifurcation or a period-doubling bifurcation cannot be ruled out. Even 
if such bifurcations were found, however, the large amount of computer memory 
needed to calculate the solution branches by this approach makes such calculations 
impractical. 

We next discuss the other Hopf bifurcations found on the neutral surface. For both 
constant-flux and constant-pressure disturbances, two Hopf bifurcations were found 
on the upper branch. Our calculations showed that all the quasi-periodic solution 
branches which bifurcate from these Hopf bifurcations are qualitatively similar. 
Therefore we present a typical solution branch which is representative of these 
results. 

In figure 11, we plot amplitude us. Reynolds number for the branch of quasi- 
periodic solutions which bifurcates from the first Hopf bifurcation shown in figure 2. 
The calculation shown uses N = 2 modes in x and M = 2 modes in t .  This resolution 
was found to be adequate for these calculations. As shown in figure 11,  the Reynolds 
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PIQURE 10. Contours of constant vorticity for qua.si-periodic flows. Plots are shown for t = 0 tc ~~ 

t = 5T/6 in steps of T/6 where T = 2a/w. Contou& are-computed over the intervals - 1 < y < 0.78 
and 0 < x < 2a/a with Re, = 3056, and a = 1 .1 .  The period T = 4932. The direction of the basic 
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Flux Reynolds number 
RQURE 11.  The variation of the amplitude with Reynolds number Re, for quasi-periodic solutions. 
Calculations are based on constant flux and are shown for a = 1 . 1 .  Results are shown for resolution 
N =  2 , M = 2 , K = 7 0 .  

number increases with increasing amplitude. As the steady waves are stable before 
and unstable after the Hopf bifurcation, the branch of quasi-periodic solutions are 
locally stable to two-dimensional disturbances. To the extent allowed by our 
numerical calculations these results confirm the calculations by J i m h e z  (1987). 
With our steady formulation, we obtain qualitatively similar results, i.e. the 
Reynolds number increases with increasing amplitude and the period of the orbits 
decreases with increasing amplitude (cf. figure 12). A quantitative comparison cannot 
be made since Jimknez used many more modes. As in the case of two-dimensional 
waves, however, we find that only a few modes are needed to give qualitative 
agreement. 

We also calculated the branch of quasi-periodic solutions which bifurcate from the 
second Hopf bifurcation which occurs on the upper branch. In  addition, we 
calculated the branch of quasi-periodic orbits which bifurcate from these two Hopf 
bifurcations for constant-pressure disturbances. As discussed above, all of the 
branches are qualitatively similar, i.e. the Reynolds number increases with increasing 
amplitude. 

I n  figure 13, we display contours of constant vorticity for a Reynolds number of 
5940, a =  1.1, y~[ -1 ,0 .78] ,  te[O,T],  and z~[O,2x/w].  As can be seen from the 
figure, the effect of the modulation in time is to  oscillate vertically the regions of high 
vorticity, again in agreement with the observations of J i m h e z  (1987). This effect is 
not as noticeable in figure 10 and 13 as it is in the work of Jimenez owing to  the 
limited resolution of our approach. J imhez  also noted that the vertical oscillation 
of vorticity is reminiscent of the ‘bursting’ of vorticity seen in boundary layers. I n  
addition, the timescale of these solutions and of the bursting is of the same order of 
the three-dimensional flow. 
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FIQURE 12. The variation of (a) the frequency w and ( b )  phase speed c with amplitude for quasi- 
periodic solutions. Calculations are baaed on constant flux and are shown for a = 1.10. Results are 
shown for resolution N = 1, M = 2, K = 70. 

To summarize this section, we have calculated the branches of quasi-periodic 
orbits which bifurcate from the two-dimensional waves. For both constant-pressure 
and constant-flux disturbances, there are two branches of quasi-periodic solutions 
which bifurcate from the upper branch of the two-dimensional waves. For these 
branches, we found that the Reynolds number increases with increasing amplitude. 
Thus the quasi-periodic orbits are stable to two-dimensional disturbances. In 
addition, the timescale of these orbits is of the same order as three-dimensional flows, 
and they exhibit phenomena which are reminiscent of ‘bursting ’. We have also 
calculated the branch of quasi-periodic orbits which only exists for constant-pressure 
disturbances. For this branch, we found that the Reynolds number first decreases 
with increasing amplitude. A limit point, however, is reached above the critical 
Reynolds number of the two-dimensional waves. 

5. Conclusions 
It is clear that there exist a wide variety of finite-amplitude flows which are 

bifurcations of plane Poiseuille flow. In this paper we have repeated and confirmed 
the calculations of travelling waves performed by Zahn, Herbert, and others. We 
have shown that linear stability analysis of these finite-amplitude states leads to 
additional bifurcations which take the form of pulsations of vorticity in the 
boundary layer. Unfortunately, none of these flows exist a t  Reynolds numbers below 
the limiting value for existence of travelling waves of permanent form. Thus, while 

14-2 
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FIQURE 13. Contours of constant vorticity for quasi-periodic flows. Plots are shown for t = 0 to 
t = 5T/6 in steps of T/6 where T = 2rr/w. Contours are computed over the intervals - 1 < y < 0.78 
and 0 < x c 2x1~4 with Re, = 5940, and a = 1.1. The period T = 20.48. The direction of the basic 
Poiseuille flow is from left to right. 
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the fluid mechanics of these new solutions is interesting in itself, it  fails to provide 
a basic vortical state to examine transition at the experimentally observed Reynolds 
numbers close to 1OOO. There may of course exist other bifurcations which have more 
complex structure. One possibility is to examine three-dimensional travelling waves. 
Goldshtik, Lifshitz & Stern (1983) have examined such solutions and their initial 
results indicate that such three-dimensional waves may exist at Reynolds number as 
low as 1000. Pugh & Saffman (1988), however, were unable to confirm the existence 
of these waves. We have also examined certain families of steady three-dimensional 
waves and this work is described in a subsequent paper. 

One problem which plagues all such computations is the need to invert large 
systems of equations in the application of Newton’s method. Using this approach, it 
is generally impossible to compute flows with more than a few modes in the 
transverse direction once the vertical direction is resolved. It is for this reason that 
our calculations display poor convergence. In contrast, dynamic simulations of such 
flows routinely utilize on the order of loo degrees of freedom. Recently, Tuckerman 
(1989) has applied an iterative technique to the computation of certain convective 
flows. This technique has the attractive feature that it only requires factorization of 
matrices arising from the linear viscous term of the equations and this can be 
accomplished efficiently even when the number of degrees of freedom is large. While 
the efficacy of this method for shear flows has not been determined such a technique 
would allow us to explore steady solutions with the same level of complexity (and 
similar levels of convergence) as is achieved through dynamic simulation. 

We wish to acknowledge helpful discussions with Philip Saffman and Dwight 
Barkley. This work was supported by the Department of Energy, Office of Energy 
Sciences (DE-AS03-76ER-72012), Applied Mathematical Sciences (KC-07-01-01). 
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